大家好,今天小编关注到一个比较有意思的话题,就是关于科技智能数据化的问题,于是小编就整理了2个相关介绍科技智能数据化的解答,让我们一起看看吧。
- 大数据和人工智能有什么关联?
- 物联网、大数据、云计算、人工智能之间的关系如何?
大数据和人工智能有什么关联?
专门写过一篇关于大数据和人工智能关系的文章。仅供参考!
网上曾经有一篇“著名”的文章,叫做《懒才是第一生产力》。文章里说:懒”这个属性一直在推动着人类进步的进程,因为想“偷懒”,所以人类就日日夜夜在那里捣腾,以达到自己想偷懒的目标。正是因为懒得不想做一系列事情,所以人类发明了洗衣机、电话、汽车……
这当然是片面的。我们都知道,科技才是真正的第一生产力。18世纪中叶,因为改良了蒸汽机,引起了第一次工业革命,使得人类从手工劳动转向动力生产,由此进入了“机器时代”。到了电气化时代,电气的发明使得人类可以使用更高效的新能源,促使生产力迅速发展。而20多年前开始进入信息化时代后,互联网的发明和使用将全世界的人类和信息连接在了一起,极大地提高了全社会的分工协作效率。
可以这么说:追求效率是社会发展的核心驱动力。正是因为这个驱动力,企业才创新出一个个全新的商业模式:O2O,互联网减法,共享经济……
然而,随着互联网普及成为一种基础设施,万物互联已经成为可能。这意味着互联网红利也已经接近尾声,互联网时代已然步入了下半场。
当前我们再一次站在了十字路口:当互联网的红利消退的时候,如何才能保持这种生产效率的稳定增长来满足人类不断增长的物质精神需求?
国家也在行动,近年来我国出台了一系列相关的政策和纲要:“互联网+”行动计划,促进大数据发展行动纲要,供给侧改革,以及《中国制造2025》。国家的目的是保持经济的可持续增长。
但是我国即将步入老龄化时代,人口红利马上将要结束,要想实现经济的增长,势必只有一条路可以走——尽可能地想办法提高劳动生产率。
一切又回到了科技上面。当今时代最核心热门的技术,一定是“大数据”和“人工智能”,他们都是提高效率推动社会进一步发展的关键技术。可以这么说:大数据+人工智能,两者的深度结合,必将会推动人类效率的再一次变革。
大数据的本质是:海量的多维度多形式的数据。它包含了每个时间空间节点的信息。如果我们把人工智能看成一个嗷嗷待哺的婴儿,那么每一个领域专业的大数据就是喂养这个婴儿的奶粉——“奶粉”的数量决定了婴儿能长多大,而“奶粉”的质量则决定了婴儿智力发育水平的高低。
大数据和机器学习是我的主要研究方向,同时也在带相关方向的研究生,所以我来回答一下这个问题。
要想搞清楚大数据与AI之间的关系,首先要了解大数据和AI的概念。大数据是互联网和物联网发展的必然结果,大数据技术的重点在于实现数据价值化,整个大数据产业链也紧紧围绕数据进行展开,包括数据的采集、存储、安全、分析、呈现和应用。另外,云计算技术与大数据技术也有密切的联系,云计算为大数据提供了服务支撑。
人工智能目前已经经过了60多年的发展,主要的研究领域集中在机器学习、自然语言处理、自动推理、知识表示、计算机视觉和机器人学等六大方面,重点的问题在于“合理的思考”和“合理的行动”。人工智能由于是典型的交叉学科,所以目前依然处在行业发展的初期,人工智能领域依然有大量的课题需要攻克,也需要解决落地应用问题。
大数据与人工智能的关系可以通过三个角度来描述,其一是大数据是人工智能的基础,大数据带来大智慧;其二是人工智能促进大数据的发展;其三是大数据和人工智能共同组建了一个新的技术生态。
大数据的发展在很大程度上推动了人工智能的发展,比如机器学习需要大量的训练数据,数据量越大则训练的效果就会越好,所以在大数据时代,机器学习包括深度学习受到了广泛的关注,一系列基于机器学习的产品在陆续开始落地应用,比如自动驾驶、智能诊疗等。
人工智能的发展反过来也极大的促进了大数据的发展,比如人工智能领域需要采集更多的数据,而且要对这些数据进行清洗、归并、分析等处理过程,这个过程也在促进大数据技术的发展。另外,大数据和人工智能之间还存在两个重要的技术板块,其一是云计算(提供计算资源服务),其二是物联网(提供人工智能产品的落地应用场景),所以大数据和人工智能的发展将带动一个新的技术生态。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网方面的问题,或者考研方面的问题,都可以咨询我,谢谢!
大数据是人工智能发展的重要支撑力,为人工智能提供“养料”。例如,在 AlphaGo 的学习过程中,核心数据是来自互联网的 3000 万例棋谱。
互联网和智能手机的快速普及催生了海量数据。无论是人们无论是用手机、跑步、看电视还是行驶在车流中,几乎所有的活动都会留下数字足迹,海量数据已汇成数据洪流,加上算法的突破和计算力的支撑成就了人工智能获得突破、走向应用。
所以说,没有大数据就没有人工智能的发展。反过来看,人工智能让大数据的价值得以最大程度的挖掘运用,而如果没有人工智能,大数据的价值会大打折扣。
大数据是人工智能的基石,目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。那么,到底什么是大数据呢?
人们经常笼统地说,大数据就是大规模的数据。
这个说法并不准确。“大规模”只是指数据的量而言。数据量大,并不代表着数据一定有可以被深度学习算法利用的价值。例如,地球绕太阳运转的过程中,每一秒钟记录一次地球相对太阳的运动速度、位置,可以得到大量数据。可如果只有这样的数据,其实并没有太多可以挖掘的价值,因为地球围绕太阳运转的物理规律,人们已经研究得比较清楚了。
那么,大数据到底是什么?大数据是如何产生的?什么样的数据才最有价值,最适合作为计算机的学习对象呢?
根据马丁·希尔伯特的总结,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:
信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。
信息存储:全球信息存储能力大约每3年翻一番。从1986年到2007年这20年间,全球信息存储能力增加了约120倍,所存储信息的数字化程度也从1986年的约1%增长到2007年的约94%。1986年时,即便用上我们所有的信息载体、存储手段,我们也不过能存储全世界所交换信息的大约1%,而2007年这个数字已经增长到大约16%。信息存储能力的增加为我们利用大数据提供了近乎无限的想象空间。
信息处理:有了海量的信息获取能力和信息存储能力,我们也必须有对这些信息进行整理、加工和分析的能力。谷歌、Facebook等公司在数据量逐渐增大的同时,也相应建立了灵活、强大的分布式数据处理集群。
物联网、大数据、云计算、人工智能之间的关系如何?
作为一名IT从业者,同时也是一名教育工作者,我来回答一下这个问题。
首先,物联网、大数据、云计算和人工智能之间存在着比较紧密的联系,从技术体系结构来看,云计算和大数据是比较接近的,都是以分布式存储和分布式计算为核心,但是云计算主要提供服务,而大数据主要完成数据的价值化。
物联网的层次结构能够很好的呈现出与大数据、云计算和人工智能之间的关系,物联网的层次目前分为六大层次,分别是设备层、网络层、物联网平台层、数据分析层、应用层和安全层,其中安全层是全覆盖的。
在物联网的六大层次当中,算力部分需要由云计算来支撑,也有一部分需要边缘计算来提供服务,数据分析层主要采用大数据技术来实现,而应用层则主要由人工智能技术来实现,或者说未来人工智能技术在应用层的作用会越来越重要。
未来物联网要想真正发挥出巨大的作用,一定离不开人工智能技术,而人工智能技术要想实现落地应用,一定离不开物联网提供的场景,所以二者之间存在非常紧密的依赖关系,目前AIoT也是一个重要的研究领域,不少大型科技公司也纷纷布局该领域。
随着5G技术的落地应用,基于5G网络能够明显拓展物联网的应用场景,这会在很大程度上促进物联网的发展,而物联网的发展也会全面加速大数据和人工智能技术的发展,一方面物联网为大数据提供了主要的数据来源,另一方面万物互联的背后必然是万物智能。
最后,在新基建计划的推动下,物联网、大数据、云计算和人工智能等技术会得到进一步的关注,大量的社会资源会向这些新技术领域汇集,这也会促进这些技术的发展和应用。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
到此,以上就是小编对于科技智能数据化的问题就介绍到这了,希望介绍关于科技智能数据化的2点解答对大家有用。